Integral of $$$\cosh{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\cosh{\left(x \right)}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

The integral of the hyperbolic cosine is $$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}$$$:

$${\color{red}{\int{\cosh{\left(x \right)} d x}}} = {\color{red}{\sinh{\left(x \right)}}}$$

Therefore,

$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}$$

Add the constant of integration:

$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}+C$$

Answer

$$$\int \cosh{\left(x \right)}\, dx = \sinh{\left(x \right)} + C$$$A