Integral of $$$\cosh{\left(x \right)}$$$
The calculator will find the integral/antiderivative of $$$\cosh{\left(x \right)}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
The integral of the hyperbolic cosine is $$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}$$$:
$${\color{red}{\int{\cosh{\left(x \right)} d x}}} = {\color{red}{\sinh{\left(x \right)}}}$$
Therefore,
$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}$$
Add the constant of integration:
$$\int{\cosh{\left(x \right)} d x} = \sinh{\left(x \right)}+C$$
Answer
$$$\int \cosh{\left(x \right)}\, dx = \sinh{\left(x \right)} + C$$$A