Derivative of $$$\cos^{2}{\left(x \right)}$$$

The calculator will find the derivative of $$$\cos^{2}{\left(x \right)}$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

The function $$$\cos^{2}{\left(x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = u^{2}$$$ and $$$g{\left(x \right)} = \cos{\left(x \right)}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

Apply the power rule $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ with $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$

Return to the old variable:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = 2 {\color{red}\left(\cos{\left(x \right)}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$

The derivative of the cosine is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:

$$2 \cos{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} = 2 \cos{\left(x \right)} {\color{red}\left(- \sin{\left(x \right)}\right)}$$

Simplify:

$$- 2 \sin{\left(x \right)} \cos{\left(x \right)} = - \sin{\left(2 x \right)}$$

Thus, $$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right) = - \sin{\left(2 x \right)}$$$.

Answer

$$$\frac{d}{dx} \left(\cos^{2}{\left(x \right)}\right) = - \sin{\left(2 x \right)}$$$A