Integral of $$$\frac{1}{r}$$$
The calculator will find the integral/antiderivative of $$$\frac{1}{r}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
The integral of $$$\frac{1}{r}$$$ is $$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{r} d r}}} = {\color{red}{\ln{\left(\left|{r}\right| \right)}}}$$
Therefore,
$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{r} d r} = \ln{\left(\left|{r}\right| \right)}+C$$
Answer
$$$\int \frac{1}{r}\, dr = \ln\left(\left|{r}\right|\right) + C$$$A