Derivative of $$$\frac{4}{x}$$$

The calculator will find the derivative of $$$\frac{4}{x}$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 4$$$ and $$$f{\left(x \right)} = \frac{1}{x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{4}{x}\right)\right)} = {\color{red}\left(4 \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = -1$$$:

$$4 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = 4 {\color{red}\left(- \frac{1}{x^{2}}\right)}$$

Thus, $$$\frac{d}{dx} \left(\frac{4}{x}\right) = - \frac{4}{x^{2}}$$$.

Answer

$$$\frac{d}{dx} \left(\frac{4}{x}\right) = - \frac{4}{x^{2}}$$$A