$$$0.666666666666666$$$ to fraction
Related calculator: Decimal to Fraction Calculator
Solution
First, convert the repeating part $$$0.666666666666666$$$ to a fraction.
Let $$$x = 0.666666666666666$$$.
Multiply both sides by $$$10$$$ raised to $$$1$$$ (number of digits to repeat), i.e. $$$10^{1} = 10$$$:
$$$10 x = 6.666666666666666$$$
Subtract the previous equation from the last one:
$$$9 x = 6$$$
Thus, $$$x = \frac{6}{9}$$$.
Since the greatest common divisor of the numerator and the denominator equals $$$3$$$, we can write that $$$\frac{6}{9} = \frac{2\cdot {\color{red}3}}{3\cdot {\color{red}3}}$$$.
Therefore, $$$0.666666666666666 = \frac{2}{3}$$$.
Don't forget about the non-repeating part $$$0$$$.
Since the integer part equals $$$0$$$, we don't add anything. This means that we won't get a mixed number, just a proper fraction.
Answer
$$$0.666666666666666 = \frac{2}{3}$$$A