Integral of $$$x^{\frac{2}{3}}$$$

The calculator will find the integral/antiderivative of $$$x^{\frac{2}{3}}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{2}{3}$$$:

$${\color{red}{\int{x^{\frac{2}{3}} d x}}}={\color{red}{\frac{x^{\frac{2}{3} + 1}}{\frac{2}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{5}{3}}}{5}\right)}}$$

Therefore,

$$\int{x^{\frac{2}{3}} d x} = \frac{3 x^{\frac{5}{3}}}{5}$$

Add the constant of integration:

$$\int{x^{\frac{2}{3}} d x} = \frac{3 x^{\frac{5}{3}}}{5}+C$$

Answer

$$$\int x^{\frac{2}{3}}\, dx = \frac{3 x^{\frac{5}{3}}}{5} + C$$$A