Integral of $$$e^{\frac{x}{3}}$$$
Related calculator: Integral Calculator
Solution
Let $$$u=\frac{x}{3}$$$.
Then $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (steps can be seen »), and we have that $$$dx = 3 du$$$.
So,
$${\color{red}{\int{e^{\frac{x}{3}} d x}}} = {\color{red}{\int{3 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=3$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{3 e^{u} d u}}} = {\color{red}{\left(3 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$3 {\color{red}{\int{e^{u} d u}}} = 3 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{3}$$$:
$$3 e^{{\color{red}{u}}} = 3 e^{{\color{red}{\left(\frac{x}{3}\right)}}}$$
Therefore,
$$\int{e^{\frac{x}{3}} d x} = 3 e^{\frac{x}{3}}$$
Add the constant of integration:
$$\int{e^{\frac{x}{3}} d x} = 3 e^{\frac{x}{3}}+C$$
Answer: $$$\int{e^{\frac{x}{3}} d x}=3 e^{\frac{x}{3}}+C$$$