Derivative of $$$- e^{- x}$$$
Related calculator: Derivative Calculator
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = -1$$$ and $$$f{\left(x \right)} = e^{- x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(- e^{- x}\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(e^{- x}\right)\right)}$$The function $$$e^{- x}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = e^{u}$$$ and $$$g{\left(x \right)} = - x$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} = - {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)}$$The derivative of the exponential is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$- {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) = - {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right)$$Return to the old variable:
$$- e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right) = - e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right)$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = -1$$$ and $$$f{\left(x \right)} = x$$$:
$$- e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} = - e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = e^{- x} {\color{red}\left(1\right)}$$Thus, $$$\frac{d}{dx} \left(- e^{- x}\right) = e^{- x}$$$.
Answer
$$$\frac{d}{dx} \left(- e^{- x}\right) = e^{- x}$$$A