Integral of $$$- e^{- x}$$$
Related calculator: Integral Calculator
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = e^{- x}$$$:
$${\color{red}{\int{\left(- e^{- x}\right)d x}}} = {\color{red}{\left(- \int{e^{- x} d x}\right)}}$$
Let $$$u=- x$$$.
Then $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
The integral can be rewritten as
$$- {\color{red}{\int{e^{- x} d x}}} = - {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$- {\color{red}{\int{\left(- e^{u}\right)d u}}} = - {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Recall that $$$u=- x$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(- x\right)}}}$$
Therefore,
$$\int{\left(- e^{- x}\right)d x} = e^{- x}$$
Add the constant of integration:
$$\int{\left(- e^{- x}\right)d x} = e^{- x}+C$$
Answer
$$$\int \left(- e^{- x}\right)\, dx = e^{- x} + C$$$A