Integral of $$$\ln\left(4\right)$$$
The calculator will find the integral/antiderivative of $$$\ln\left(4\right)$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\ln{\left(4 \right)}$$$:
$${\color{red}{\int{\ln{\left(4 \right)} d x}}} = {\color{red}{x \ln{\left(4 \right)}}}$$
Therefore,
$$\int{\ln{\left(4 \right)} d x} = x \ln{\left(4 \right)}$$
Simplify:
$$\int{\ln{\left(4 \right)} d x} = 2 x \ln{\left(2 \right)}$$
Add the constant of integration:
$$\int{\ln{\left(4 \right)} d x} = 2 x \ln{\left(2 \right)}+C$$
Answer: $$$\int{\ln{\left(4 \right)} d x}=2 x \ln{\left(2 \right)}+C$$$