Integral of $$$e^{x^{2}}$$$

The calculator will find the integral/antiderivative of $$$e^{x^{2}}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

This integral (Imaginary Error Function) does not have a closed form:

$${\color{red}{\int{e^{x^{2}} d x}}} = {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}\right)}}$$

Therefore,

$$\int{e^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}$$

Add the constant of integration:

$$\int{e^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2}+C$$

Answer

$$$\int e^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \right)}}{2} + C$$$A