Derivative of $$$e^{\frac{1}{x}}$$$

The calculator will find the derivative of $$$e^{\frac{1}{x}}$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

The function $$$e^{\frac{1}{x}}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = e^{u}$$$ and $$$g{\left(x \right)} = \frac{1}{x}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{\frac{1}{x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$

The derivative of the exponential is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\frac{1}{x}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\frac{1}{x}\right)$$

Return to the old variable:

$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\frac{1}{x}\right) = e^{{\color{red}\left(\frac{1}{x}\right)}} \frac{d}{dx} \left(\frac{1}{x}\right)$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = -1$$$:

$$e^{\frac{1}{x}} {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)} = e^{\frac{1}{x}} {\color{red}\left(- \frac{1}{x^{2}}\right)}$$

Thus, $$$\frac{d}{dx} \left(e^{\frac{1}{x}}\right) = - \frac{e^{\frac{1}{x}}}{x^{2}}$$$.

Answer

$$$\frac{d}{dx} \left(e^{\frac{1}{x}}\right) = - \frac{e^{\frac{1}{x}}}{x^{2}}$$$A