Integral of $$$\ln\left(x + 1\right)$$$
Related calculator: Integral Calculator
Solution
Let $$$u=x + 1$$$.
Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$${\color{red}{\int{\ln{\left(x + 1 \right)} d x}}} = {\color{red}{\int{\ln{\left(u \right)} d u}}}$$
For the integral $$$\int{\ln{\left(u \right)} d u}$$$, use integration by parts $$$\int \operatorname{h} \operatorname{dv} = \operatorname{h}\operatorname{v} - \int \operatorname{v} \operatorname{dh}$$$.
Let $$$\operatorname{h}=\ln{\left(u \right)}$$$ and $$$\operatorname{dv}=du$$$.
Then $$$\operatorname{dh}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d u}=u$$$ (steps can be seen »).
The integral becomes
$${\color{red}{\int{\ln{\left(u \right)} d u}}}={\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}={\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$u \ln{\left(u \right)} - {\color{red}{\int{1 d u}}} = u \ln{\left(u \right)} - {\color{red}{u}}$$
Recall that $$$u=x + 1$$$:
$$- {\color{red}{u}} + {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - {\color{red}{\left(x + 1\right)}} + {\color{red}{\left(x + 1\right)}} \ln{\left({\color{red}{\left(x + 1\right)}} \right)}$$
Therefore,
$$\int{\ln{\left(x + 1 \right)} d x} = - x + \left(x + 1\right) \ln{\left(x + 1 \right)} - 1$$
Simplify:
$$\int{\ln{\left(x + 1 \right)} d x} = \left(x + 1\right) \left(\ln{\left(x + 1 \right)} - 1\right)$$
Add the constant of integration:
$$\int{\ln{\left(x + 1 \right)} d x} = \left(x + 1\right) \left(\ln{\left(x + 1 \right)} - 1\right)+C$$
Answer: $$$\int{\ln{\left(x + 1 \right)} d x}=\left(x + 1\right) \left(\ln{\left(x + 1 \right)} - 1\right)+C$$$