Integral of $$$\frac{1}{\ln\left(x\right)}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\ln\left(x\right)}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

This integral (Logarithmic Integral) does not have a closed form:

$${\color{red}{\int{\frac{1}{\ln{\left(x \right)}} d x}}} = {\color{red}{\operatorname{li}{\left(x \right)}}}$$

Therefore,

$$\int{\frac{1}{\ln{\left(x \right)}} d x} = \operatorname{li}{\left(x \right)}$$

Add the constant of integration:

$$\int{\frac{1}{\ln{\left(x \right)}} d x} = \operatorname{li}{\left(x \right)}+C$$

Answer: $$$\int{\frac{1}{\ln{\left(x \right)}} d x}=\operatorname{li}{\left(x \right)}+C$$$