Integral of $$$\frac{x}{x + 1}$$$

The calculator will find the integral/antiderivative of $$$\frac{x}{x + 1}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Rewrite and split the fraction:

$${\color{red}{\int{\frac{x}{x + 1} d x}}} = {\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}}$$

Integrate term by term:

$${\color{red}{\int{\left(1 - \frac{1}{x + 1}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{1}{x + 1} d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:

$$- \int{\frac{1}{x + 1} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{1}{x + 1} d x} + {\color{red}{x}}$$

Let $$$u=x + 1$$$.

Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.

The integral can be rewritten as

$$x - {\color{red}{\int{\frac{1}{x + 1} d x}}} = x - {\color{red}{\int{\frac{1}{u} d u}}}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x - {\color{red}{\int{\frac{1}{u} d u}}} = x - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=x + 1$$$:

$$x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x - \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$

Therefore,

$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{x}{x + 1} d x} = x - \ln{\left(\left|{x + 1}\right| \right)}+C$$

Answer

$$$\int \frac{x}{x + 1}\, dx = \left(x - \ln\left(\left|{x + 1}\right|\right)\right) + C$$$A