Integral of $$$\operatorname{acsc}{\left(x \right)}$$$
Related calculator: Integral Calculator
Solution
For the integral $$$\int{\operatorname{acsc}{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\operatorname{acsc}{\left(x \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\operatorname{acsc}{\left(x \right)}\right)^{\prime }dx=- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
Therefore,
$${\color{red}{\int{\operatorname{acsc}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{acsc}{\left(x \right)} \cdot x-\int{x \cdot \left(- \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) d x}\right)}}={\color{red}{\left(x \operatorname{acsc}{\left(x \right)} - \int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \frac{1}{\sqrt{x^{2} - 1}}$$$:
$$x \operatorname{acsc}{\left(x \right)} - {\color{red}{\int{\left(- \frac{\left|{x}\right|}{x \sqrt{x^{2} - 1}}\right)d x}}} = x \operatorname{acsc}{\left(x \right)} - {\color{red}{\left(- \int{\frac{1}{\sqrt{x^{2} - 1}} d x}\right)}}$$
Let $$$x=\cosh{\left(u \right)}$$$.
Then $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Integrand becomes
$$$\frac{1}{\sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}$$$
Use the identity $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}}$$$
Assuming that $$$\sinh{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}}} = \frac{1}{\sinh{\left( u \right)}}$$$
Integral becomes
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{\frac{1}{\sqrt{x^{2} - 1}} d x}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{\int{1 d u}}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}}$$
Recall that $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$x \operatorname{acsc}{\left(x \right)} + {\color{red}{u}} = x \operatorname{acsc}{\left(x \right)} + {\color{red}{\operatorname{acosh}{\left(x \right)}}}$$
Therefore,
$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}$$
Add the constant of integration:
$$\int{\operatorname{acsc}{\left(x \right)} d x} = x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}+C$$
Answer
$$$\int \operatorname{acsc}{\left(x \right)}\, dx = \left(x \operatorname{acsc}{\left(x \right)} + \operatorname{acosh}{\left(x \right)}\right) + C$$$A