Integral of $$$\frac{1}{t}$$$
The calculator will find the integral/antiderivative of $$$\frac{1}{t}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{t} d t}}} = {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
Therefore,
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}+C$$
Answer
$$$\int \frac{1}{t}\, dt = \ln\left(\left|{t}\right|\right) + C$$$A