Integral of $$$\frac{1}{t}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{t}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

The integral of $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{t} d t}}} = {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$

Therefore,

$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}+C$$

Answer

$$$\int \frac{1}{t}\, dt = \ln\left(\left|{t}\right|\right) + C$$$A