Derivative of $$$\sqrt{2} \sqrt{x}$$$

The calculator will find the derivative of $$$\sqrt{2} \sqrt{x}$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = \sqrt{2}$$$ and $$$f{\left(x \right)} = \sqrt{x}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dx} \left(\sqrt{x}\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = \frac{1}{2}$$$:

$$\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} = \sqrt{2} {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)}$$

Thus, $$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$.

Answer

$$$\frac{d}{dx} \left(\sqrt{2} \sqrt{x}\right) = \frac{\sqrt{2}}{2 \sqrt{x}}$$$A