Integral of $$$n^{x}$$$ with respect to $$$x$$$
The calculator will find the integral/antiderivative of $$$n^{x}$$$ with respect to $$$x$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=n$$$:
$${\color{red}{\int{n^{x} d x}}} = {\color{red}{\frac{n^{x}}{\ln{\left(n \right)}}}}$$
Therefore,
$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}$$
Add the constant of integration:
$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}+C$$
Answer
$$$\int n^{x}\, dx = \frac{n^{x}}{\ln\left(n\right)} + C$$$A