Integral of $$$n^{x}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$n^{x}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=n$$$:

$${\color{red}{\int{n^{x} d x}}} = {\color{red}{\frac{n^{x}}{\ln{\left(n \right)}}}}$$

Therefore,

$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}$$

Add the constant of integration:

$$\int{n^{x} d x} = \frac{n^{x}}{\ln{\left(n \right)}}+C$$

Answer

$$$\int n^{x}\, dx = \frac{n^{x}}{\ln\left(n\right)} + C$$$A