Integral of $$$\frac{1}{x}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{x}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{x} d x}}} = {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Therefore,

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}+C$$

Answer

$$$\int \frac{1}{x}\, dx = \ln\left(\left|{x}\right|\right) + C$$$A