Integral of $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$
The calculator will find the integral/antiderivative of $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Rewrite the integrand in terms of the secant:
$${\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}$$
The integral of $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$${\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = {\color{red}{\tan{\left(x \right)}}}$$
Therefore,
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)}+C$$
Answer: $$$\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}=\tan{\left(x \right)}+C$$$