Derivative of $$$\sec^{3}{\left(x \right)}$$$
Related calculator: Derivative Calculator
Solution
The function $$$\sec^{3}{\left(x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = u^{3}$$$ and $$$g{\left(x \right)} = \sec{\left(x \right)}$$$.
Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sec^{3}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{3}\right) \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)}$$Apply the power rule $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ with $$$n = 3$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{3}\right)\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) = {\color{red}\left(3 u^{2}\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right)$$Return to the old variable:
$$3 {\color{red}\left(u\right)}^{2} \frac{d}{dx} \left(\sec{\left(x \right)}\right) = 3 {\color{red}\left(\sec{\left(x \right)}\right)}^{2} \frac{d}{dx} \left(\sec{\left(x \right)}\right)$$The derivative of the secant is $$$\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}$$$:
$$3 \sec^{2}{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} = 3 \sec^{2}{\left(x \right)} {\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)}$$Thus, $$$\frac{d}{dx} \left(\sec^{3}{\left(x \right)}\right) = 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$.
Answer
$$$\frac{d}{dx} \left(\sec^{3}{\left(x \right)}\right) = 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$A