Integral of $$$\frac{1}{y}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{y}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

The integral of $$$\frac{1}{y}$$$ is $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:

$${\color{red}{\int{\frac{1}{y} d y}}} = {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$

Therefore,

$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}+C$$

Answer: $$$\int{\frac{1}{y} d y}=\ln{\left(\left|{y}\right| \right)}+C$$$