Integral of $$$\frac{1}{y}$$$
The calculator will find the integral/antiderivative of $$$\frac{1}{y}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
The integral of $$$\frac{1}{y}$$$ is $$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{y} d y}}} = {\color{red}{\ln{\left(\left|{y}\right| \right)}}}$$
Therefore,
$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{y} d y} = \ln{\left(\left|{y}\right| \right)}+C$$
Answer: $$$\int{\frac{1}{y} d y}=\ln{\left(\left|{y}\right| \right)}+C$$$