Integral of $$$1 - \cos{\left(x \right)}$$$
Related calculator: Integral Calculator
Solution
Integrate term by term:
$${\color{red}{\int{\left(1 - \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\cos{\left(x \right)} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$- \int{\cos{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = - \int{\cos{\left(x \right)} d x} + {\color{red}{x}}$$
The integral of the cosine is $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$x - {\color{red}{\int{\cos{\left(x \right)} d x}}} = x - {\color{red}{\sin{\left(x \right)}}}$$
Therefore,
$$\int{\left(1 - \cos{\left(x \right)}\right)d x} = x - \sin{\left(x \right)}$$
Add the constant of integration:
$$\int{\left(1 - \cos{\left(x \right)}\right)d x} = x - \sin{\left(x \right)}+C$$
Answer: $$$\int{\left(1 - \cos{\left(x \right)}\right)d x}=x - \sin{\left(x \right)}+C$$$