Integral of $$$\frac{1}{x + 1}$$$
Related calculator: Integral Calculator
Solution
Let $$$u=x + 1$$$.
Then $$$du=\left(x + 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
The integral can be rewritten as
$${\color{red}{\int{\frac{1}{x + 1} d x}}} = {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{u} d u}}} = {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=x + 1$$$:
$$\ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{{\color{red}{\left(x + 1\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{1}{x + 1} d x} = \ln{\left(\left|{x + 1}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{1}{x + 1} d x} = \ln{\left(\left|{x + 1}\right| \right)}+C$$
Answer
$$$\int \frac{1}{x + 1}\, dx = \ln\left(\left|{x + 1}\right|\right) + C$$$A