Derivative of $$$x \ln\left(x\right)$$$
Related calculator: Derivative Calculator
Solution
Apply the product rule $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ with $$$f{\left(x \right)} = x$$$ and $$$g{\left(x \right)} = \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x \frac{d}{dx} \left(\ln\left(x\right)\right) + \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(\ln\left(x\right)\right) + \ln\left(x\right) {\color{red}\left(1\right)}$$The derivative of the natural logarithm is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + \ln\left(x\right) = x {\color{red}\left(\frac{1}{x}\right)} + \ln\left(x\right)$$Thus, $$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$.
Answer
$$$\frac{d}{dx} \left(x \ln\left(x\right)\right) = \ln\left(x\right) + 1$$$A