Integral of $$$\ln\left(\frac{1}{x}\right)$$$
Related calculator: Integral Calculator
Solution
The input is rewritten: $$$\int{\ln{\left(\frac{1}{x} \right)} d x}=\int{\left(- \ln{\left(x \right)}\right)d x}$$$.
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \ln{\left(x \right)}$$$:
$${\color{red}{\int{\left(- \ln{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\ln{\left(x \right)} d x}\right)}}$$
For the integral $$$\int{\ln{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\ln{\left(x \right)}$$$ and $$$\operatorname{dv}=dx$$$.
Then $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (steps can be seen ») and $$$\operatorname{v}=\int{1 d x}=x$$$ (steps can be seen »).
Therefore,
$$- {\color{red}{\int{\ln{\left(x \right)} d x}}}=- {\color{red}{\left(\ln{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x} d x}\right)}}=- {\color{red}{\left(x \ln{\left(x \right)} - \int{1 d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$- x \ln{\left(x \right)} + {\color{red}{\int{1 d x}}} = - x \ln{\left(x \right)} + {\color{red}{x}}$$
Therefore,
$$\int{\left(- \ln{\left(x \right)}\right)d x} = - x \ln{\left(x \right)} + x$$
Simplify:
$$\int{\left(- \ln{\left(x \right)}\right)d x} = x \left(1 - \ln{\left(x \right)}\right)$$
Add the constant of integration:
$$\int{\left(- \ln{\left(x \right)}\right)d x} = x \left(1 - \ln{\left(x \right)}\right)+C$$
Answer: $$$\int{\left(- \ln{\left(x \right)}\right)d x}=x \left(1 - \ln{\left(x \right)}\right)+C$$$