Derivative of $$$\ln\left(\cos{\left(x \right)}\right)$$$

The calculator will find the derivative of $$$\ln\left(\cos{\left(x \right)}\right)$$$, with steps shown.

Related calculator: Derivative Calculator

Solution

The function $$$\ln\left(\cos{\left(x \right)}\right)$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \ln\left(u\right)$$$ and $$$g{\left(x \right)} = \cos{\left(x \right)}$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$

The derivative of the natural logarithm is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)$$

Return to the old variable:

$$\frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(\cos{\left(x \right)}\right)}}$$

The derivative of the cosine is $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}{\cos{\left(x \right)}} = \frac{{\color{red}\left(- \sin{\left(x \right)}\right)}}{\cos{\left(x \right)}}$$

Simplify:

$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} = - \tan{\left(x \right)}$$

Thus, $$$\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)}$$$.

Answer

$$$\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)}$$$A