Integral of $$$7^{x}$$$
The calculator will find the integral/antiderivative of $$$7^{x}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=7$$$:
$${\color{red}{\int{7^{x} d x}}} = {\color{red}{\frac{7^{x}}{\ln{\left(7 \right)}}}}$$
Therefore,
$$\int{7^{x} d x} = \frac{7^{x}}{\ln{\left(7 \right)}}$$
Add the constant of integration:
$$\int{7^{x} d x} = \frac{7^{x}}{\ln{\left(7 \right)}}+C$$
Answer
$$$\int 7^{x}\, dx = \frac{7^{x}}{\ln\left(7\right)} + C$$$A