Integral of $$$2^{n}$$$

The calculator will find the integral/antiderivative of $$$2^{n}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$${\color{red}{\int{2^{n} d n}}} = {\color{red}{\frac{2^{n}}{\ln{\left(2 \right)}}}}$$

Therefore,

$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}$$

Add the constant of integration:

$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}+C$$

Answer: $$$\int{2^{n} d n}=\frac{2^{n}}{\ln{\left(2 \right)}}+C$$$