Integral of $$$2^{n}$$$
The calculator will find the integral/antiderivative of $$$2^{n}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$${\color{red}{\int{2^{n} d n}}} = {\color{red}{\frac{2^{n}}{\ln{\left(2 \right)}}}}$$
Therefore,
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}$$
Add the constant of integration:
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}+C$$
Answer: $$$\int{2^{n} d n}=\frac{2^{n}}{\ln{\left(2 \right)}}+C$$$