Derivative of $$$3 \ln\left(x\right)$$$
The calculator will find the derivative of $$$3 \ln\left(x\right)$$$, with steps shown.
Related calculator: Derivative Calculator
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 3$$$ and $$$f{\left(x \right)} = \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$The derivative of the natural logarithm is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{1}{x}\right)}$$Thus, $$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{3}{x}$$$.
Answer
$$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{3}{x}$$$A