Derivative of $$$2 \sec{\left(x \right)}$$$
The calculator will find the derivative of $$$2 \sec{\left(x \right)}$$$, with steps shown.
Related calculator: Derivative Calculator
Solution
Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(x \right)} = \sec{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 \sec{\left(x \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)}$$The derivative of the secant is $$$\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)} = 2 {\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)}$$Thus, $$$\frac{d}{dx} \left(2 \sec{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec{\left(x \right)}$$$.
Answer
$$$\frac{d}{dx} \left(2 \sec{\left(x \right)}\right) = 2 \tan{\left(x \right)} \sec{\left(x \right)}$$$A