Integral of $$$10^{x}$$$

The calculator will find the integral/antiderivative of $$$10^{x}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=10$$$:

$${\color{red}{\int{10^{x} d x}}} = {\color{red}{\frac{10^{x}}{\ln{\left(10 \right)}}}}$$

Therefore,

$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}$$

Add the constant of integration:

$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}+C$$

Answer: $$$\int{10^{x} d x}=\frac{10^{x}}{\ln{\left(10 \right)}}+C$$$