Integral of $$$10^{x}$$$
The calculator will find the integral/antiderivative of $$$10^{x}$$$, with steps shown.
Related calculator: Integral Calculator
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=10$$$:
$${\color{red}{\int{10^{x} d x}}} = {\color{red}{\frac{10^{x}}{\ln{\left(10 \right)}}}}$$
Therefore,
$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}$$
Add the constant of integration:
$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}+C$$
Answer: $$$\int{10^{x} d x}=\frac{10^{x}}{\ln{\left(10 \right)}}+C$$$