Integral of $$$e^{- 3 x}$$$
Related calculator: Integral Calculator
Solution
Let $$$u=- 3 x$$$.
Then $$$du=\left(- 3 x\right)^{\prime }dx = - 3 dx$$$ (steps can be seen »), and we have that $$$dx = - \frac{du}{3}$$$.
Thus,
$${\color{red}{\int{e^{- 3 x} d x}}} = {\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=- \frac{1}{3}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{e^{u}}{3}\right)d u}}} = {\color{red}{\left(- \frac{\int{e^{u} d u}}{3}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{3} = - \frac{{\color{red}{e^{u}}}}{3}$$
Recall that $$$u=- 3 x$$$:
$$- \frac{e^{{\color{red}{u}}}}{3} = - \frac{e^{{\color{red}{\left(- 3 x\right)}}}}{3}$$
Therefore,
$$\int{e^{- 3 x} d x} = - \frac{e^{- 3 x}}{3}$$
Add the constant of integration:
$$\int{e^{- 3 x} d x} = - \frac{e^{- 3 x}}{3}+C$$
Answer: $$$\int{e^{- 3 x} d x}=- \frac{e^{- 3 x}}{3}+C$$$