Integral of $$$\sqrt[3]{x}$$$

The calculator will find the integral/antiderivative of $$$\sqrt[3]{x}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{3}$$$:

$${\color{red}{\int{\sqrt[3]{x} d x}}}={\color{red}{\int{x^{\frac{1}{3}} d x}}}={\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$

Therefore,

$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}$$

Add the constant of integration:

$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}+C$$

Answer

$$$\int \sqrt[3]{x}\, dx = \frac{3 x^{\frac{4}{3}}}{4} + C$$$A