Integral of $$$\sec^{5}{\left(x \right)}$$$

The calculator will find the integral/antiderivative of $$$\sec^{5}{\left(x \right)}$$$, with steps shown.

Related calculator: Integral Calculator

Solution

For the integral $$$\int{\sec^{5}{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\sec^{3}{\left(x \right)}$$$ and $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$.

Then $$$\operatorname{du}=\left(\sec^{3}{\left(x \right)}\right)^{\prime }dx=3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$ (steps can be seen »).

So,

$$\int{\sec^{5}{\left(x \right)} d x}=\sec^{3}{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}$$

Strip out the constant:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}$$

Apply the formula $$$\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1$$$:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}$$

Expand:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}$$

The integral of a difference is the difference of integrals:

$$\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 \int{\sec^{5}{\left(x \right)} d x}$$

Thus, we get the following simple linear equation with respect to the integral:

$${\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 {\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}$$

Solving it, we obtain that

$$\int{\sec^{5}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \int{\sec^{3}{\left(x \right)} d x}}{4}$$

For the integral $$$\int{\sec^{3}{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\sec{\left(x \right)}$$$ and $$$\operatorname{dv}=\sec^{2}{\left(x \right)} dx$$$.

Then $$$\operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)}$$$ (steps can be seen »).

So,

$$\int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}$$

Apply the formula $$$\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1$$$:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}$$

Expand:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}$$

The integral of a difference is the difference of integrals:

$$\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x}$$

Thus, we get the following simple linear equation with respect to the integral:

$${\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}$$

Solving it, we obtain that

$$\int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}$$

Therefore,

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}}{4} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}\right)}}}{4}$$

Rewrite the secant as $$$\sec\left(x\right)=\frac{1}{\cos\left(x\right)}$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(x \right)} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8}$$

Rewrite the cosine in terms of the sine using the formula $$$\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right)$$$ and then rewrite the sine using the double angle formula $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}$$

Multiply the numerator and denominator by $$$\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right)$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8}$$

Let $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$.

Then $$$du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du$$$.

The integral becomes

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8}$$

Recall that $$$u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}$$

Therefore,

$$\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}$$

Add the constant of integration:

$$\int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C$$

Answer: $$$\int{\sec^{5}{\left(x \right)} d x}=\frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C$$$