Fraction to Decimal Calculator
Convert fractions to decimals step by step
The calculator will convert the given fraction (proper or improper) or mixed number into a decimal (possibly, repeating or recurring), with steps shown.
Solution
Your input: convert $$$\frac{900}{52}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{1}&\phantom{7}&\phantom{.}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\52&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}9&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$52$$$'s are in $$$9$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$9-52 \cdot 0 = 9 - 0= 9$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}\color{Peru}{0}&\phantom{1}&\phantom{7}&\phantom{.}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}\color{Peru}{9}& 0 \downarrow&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$52$$$'s are in $$$90$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$90-52 \cdot 1 = 90 - 52= 38$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&\color{OrangeRed}{1}&\phantom{7}&\phantom{.}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0& 0 \downarrow&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{9}&\color{OrangeRed}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$52$$$'s are in $$$380$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$380-52 \cdot 7 = 380 - 364= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&\color{Chocolate}{7}&\phantom{.}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}\color{Chocolate}{3}&\color{Chocolate}{8}&\color{Chocolate}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$52$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-52 \cdot 3 = 160 - 156= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&\color{Red}{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&\color{Red}{1}&\color{Red}{6}&\phantom{.}&\color{Red}{0}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$52$$$'s are in $$$40$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$40-52 \cdot 0 = 40 - 0= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&\color{DarkCyan}{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&\color{DarkCyan}{4}&\color{DarkCyan}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$52$$$'s are in $$$400$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$400-52 \cdot 7 = 400 - 364= 36$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&\color{Fuchsia}{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&\color{Fuchsia}{4}&\color{Fuchsia}{0}&\color{Fuchsia}{0}\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$52$$$'s are in $$$360$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$360-52 \cdot 6 = 360 - 312= 48$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&\color{SaddleBrown}{6}&\phantom{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&\color{SaddleBrown}{3}&\color{SaddleBrown}{6}&\color{SaddleBrown}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 8
How many $$$52$$$'s are in $$$480$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$480-52 \cdot 9 = 480 - 468= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&\color{Violet}{9}&\phantom{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&\color{Violet}{4}&\color{Violet}{8}&\color{Violet}{0}\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 9
How many $$$52$$$'s are in $$$120$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$120-52 \cdot 2 = 120 - 104= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&\color{DarkMagenta}{2}&\phantom{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&\color{DarkMagenta}{1}&\color{DarkMagenta}{2}&\color{DarkMagenta}{0}\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 10
How many $$$52$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-52 \cdot 3 = 160 - 156= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&\color{Green}{3}&\phantom{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&\color{Green}{1}&\color{Green}{6}&\color{Green}{0}\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 11
How many $$$52$$$'s are in $$$40$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$40-52 \cdot 0 = 40 - 0= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&\color{Brown}{0}&\phantom{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&\color{Brown}{4}&\color{Brown}{0}\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&4&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 12
How many $$$52$$$'s are in $$$400$$$?
The answer is $$$7$$$.
Write down $$$7$$$ in the upper part of the table.
Now, $$$400-52 \cdot 7 = 400 - 364= 36$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&0&\color{Chartreuse}{7}&\phantom{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&\color{Chartreuse}{4}&\color{Chartreuse}{0}&\color{Chartreuse}{0}\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&3&6&4\\\hline\phantom{lll}&&&&&&&&&&&3&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 13
How many $$$52$$$'s are in $$$360$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$360-52 \cdot 6 = 360 - 312= 48$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&0&7&\color{BlueViolet}{6}&\phantom{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&4&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&3&6&4\\\hline\phantom{lll}&&&&&&&&&&&\color{BlueViolet}{3}&\color{BlueViolet}{6}&\color{BlueViolet}{0}\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&1&2\\\hline\phantom{lll}&&&&&&&&&&&&4&8&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 14
How many $$$52$$$'s are in $$$480$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$480-52 \cdot 9 = 480 - 468= 12$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&0&7&6&\color{GoldenRod}{9}&\phantom{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&4&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&3&6&4\\\hline\phantom{lll}&&&&&&&&&&&3&6&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&1&2\\\hline\phantom{lll}&&&&&&&&&&&&\color{GoldenRod}{4}&\color{GoldenRod}{8}&\color{GoldenRod}{0}\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&1&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 15
How many $$$52$$$'s are in $$$120$$$?
The answer is $$$2$$$.
Write down $$$2$$$ in the upper part of the table.
Now, $$$120-52 \cdot 2 = 120 - 104= 16$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&0&7&6&9&\color{DarkBlue}{2}&\phantom{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&4&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&3&6&4\\\hline\phantom{lll}&&&&&&&&&&&3&6&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&1&2\\\hline\phantom{lll}&&&&&&&&&&&&4&8&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&\color{DarkBlue}{1}&\color{DarkBlue}{2}&\color{DarkBlue}{0}\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&&&&&&&1&6&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 16
How many $$$52$$$'s are in $$$160$$$?
The answer is $$$3$$$.
Write down $$$3$$$ in the upper part of the table.
Now, $$$160-52 \cdot 3 = 160 - 156= 4$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccccccccccccc}0&1&7&.&3&0&7&6&9&2&3&0&7&6&9&2&\color{Blue}{3}\end{array}&\\\color{Magenta}{52}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccccccccccccc}9&0&0&.&0&0&0&0&0&0&0&0&0&0&0&0&0\end{array}}&\\&\begin{array}{llllllllllllllll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}9&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}5&2&\phantom{.}\\\hline\phantom{lll}3&8&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}3&6&4&\phantom{.}\\\hline\phantom{lll}&1&6&\phantom{.}&0\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&1&5&\phantom{.}&6\\\hline\phantom{lll}&&&&4&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&0\\\hline\phantom{lll}&&&&4&0&0\\&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&3&6&4\\\hline\phantom{lll}&&&&&3&6&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&1&2\\\hline\phantom{lll}&&&&&&4&8&0\\&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&1&2&0\\&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&1&6&0\\&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&4&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&0\\\hline\phantom{lll}&&&&&&&&&&4&0&0\\&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&3&6&4\\\hline\phantom{lll}&&&&&&&&&&&3&6&0\\&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&3&1&2\\\hline\phantom{lll}&&&&&&&&&&&&4&8&0\\&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&4&6&8\\\hline\phantom{lll}&&&&&&&&&&&&&1&2&0\\&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&1&0&4\\\hline\phantom{lll}&&&&&&&&&&&&&&\color{Blue}{1}&\color{Blue}{6}&\color{Blue}{0}\\&&&&&&&&&&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&&&&&&&&&1&5&6\\\hline\phantom{lll}&&&&&&&&&&&&&&&&4\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{900}{52}=17.30 \overline{769230}$$$
Answer: $$$\frac{900}{52}=17.30\overline{769230}$$$