Ontbinding in priemfactoren van $$$1534$$$
Uw invoer
Bepaal de ontbinding in priemfactoren van $$$1534$$$.
Oplossing
Begin met het getal $$$2$$$.
Bepaal of $$$1534$$$ deelbaar door $$$2$$$ is.
Het is deelbaar, dus deel $$$1534$$$ door $$${\color{green}2}$$$: $$$\frac{1534}{2} = {\color{red}767}$$$.
Bepaal of $$$767$$$ deelbaar is door $$$2$$$.
Omdat het niet deelbaar is, ga door naar het volgende priemgetal.
Het volgende priemgetal is $$$3$$$.
Bepaal of $$$767$$$ deelbaar is door $$$3$$$.
Omdat het niet deelbaar is, ga door naar het volgende priemgetal.
Het volgende priemgetal is $$$5$$$.
Bepaal of $$$767$$$ deelbaar is door $$$5$$$.
Omdat het niet deelbaar is, ga door naar het volgende priemgetal.
Het volgende priemgetal is $$$7$$$.
Bepaal of $$$767$$$ deelbaar is door $$$7$$$.
Omdat het niet deelbaar is, ga door naar het volgende priemgetal.
Het volgende priemgetal is $$$11$$$.
Bepaal of $$$767$$$ deelbaar is door $$$11$$$.
Omdat het niet deelbaar is, ga door naar het volgende priemgetal.
Het volgende priemgetal is $$$13$$$.
Bepaal of $$$767$$$ deelbaar is door $$$13$$$.
Het is deelbaar, dus deel $$$767$$$ door $$${\color{green}13}$$$: $$$\frac{767}{13} = {\color{red}59}$$$.
Het priemgetal $$${\color{green}59}$$$ heeft geen andere delers dan $$$1$$$ en $$${\color{green}59}$$$: $$$\frac{59}{59} = {\color{red}1}$$$.
Aangezien we $$$1$$$ hebben verkregen, zijn we klaar.
Tel nu gewoon hoe vaak de delers (groene getallen) voorkomen en noteer de priemfactorontbinding: $$$1534 = 2 \cdot 13 \cdot 59$$$.
Antwoord
De ontbinding in priemfactoren is $$$1534 = 2 \cdot 13 \cdot 59$$$A.