Breuk-naar-decimaal rekenmachine
Zet breuken stap voor stap om in decimale getallen
De rekenmachine zet de gegeven breuk (echt of onecht) of het gemengde getal om in een decimaal getal (mogelijk repeterend/periodiek), met uitgewerkte stappen.
Solution
Your input: convert $$$\frac{200}{5}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccc}\phantom{4}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\5&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}2&0&0\end{array}}&\\&\begin{array}{lll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$5$$$'s are in $$$2$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$2-5 \cdot 0 = 2 - 0= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\color{DarkCyan}{0}&\phantom{4}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}\color{DarkCyan}{2}& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$5$$$'s are in $$$20$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$20-5 \cdot 4 = 20 - 20= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&\color{Chartreuse}{4}&\phantom{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}2&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Chartreuse}{2}&\color{Chartreuse}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$5$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-5 \cdot 0 = 0 - 0= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&4&\color{Violet}{0}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}2&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$5$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-5 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}0&4&0&.&\color{OrangeRed}{0}\end{array}&\\\color{Magenta}{5}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}2&0&0&.&0\end{array}}&\\&\begin{array}{llll}-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}2&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}2&0&\phantom{.}\\\hline\phantom{lll}&0&0&\phantom{.}\\-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}&&\color{OrangeRed}{0}&\phantom{.}&\color{OrangeRed}{0}\\&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&\phantom{.}&0\\\hline\phantom{lll}&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Since the remainder is $$$0$$$, then we are done.
Therefore, $$$\frac{200}{5}=40.0$$$
Answer: $$$\frac{200}{5}=40.0$$$