Vereenvoudig $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$

De rekenmachine zal de Booleaanse uitdrukking $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$ vereenvoudigen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Waarheidstabel-rekenmachine

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Vereenvoudig de Booleaanse uitdrukking $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$.

Oplossing

Pas de stelling van De Morgan $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ toe met $$$x = \overline{A} + B$$$ en $$$y = \overline{B} + C$$$:

$${\color{red}\left(\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}\right)} = {\color{red}\left(\overline{\overline{A} + B} + \overline{\overline{B} + C}\right)}$$

Pas de stelling van De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ toe met $$$x = \overline{A}$$$ en $$$y = B$$$:

$${\color{red}\left(\overline{\overline{A} + B}\right)} + \overline{\overline{B} + C} = {\color{red}\left(\overline{\overline{A}} \cdot \overline{B}\right)} + \overline{\overline{B} + C}$$

Pas de wet van de dubbele negatie (involutie) $$$\overline{\overline{x}} = x$$$ toe op $$$x = A$$$:

$$\left({\color{red}\left(\overline{\overline{A}}\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C} = \left({\color{red}\left(A\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C}$$

Pas de stelling van De Morgan $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ toe met $$$x = \overline{B}$$$ en $$$y = C$$$:

$$\left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B} + C}\right)} = \left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B}} \cdot \overline{C}\right)}$$

Pas de wet van de dubbele negatie (involutie) $$$\overline{\overline{x}} = x$$$ toe op $$$x = B$$$:

$$\left(A \cdot \overline{B}\right) + \left({\color{red}\left(\overline{\overline{B}}\right)} \cdot \overline{C}\right) = \left(A \cdot \overline{B}\right) + \left({\color{red}\left(B\right)} \cdot \overline{C}\right)$$

Antwoord

$$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)} = \left(A \cdot \overline{B}\right) + \left(B \cdot \overline{C}\right)$$$


Please try a new game Rotatly