Rekenmachine voor partiële afgeleiden

Bereken partiële afgeleiden stap voor stap

Deze online rekenmachine berekent de partiële afgeleide van de functie en toont de stappen. U kunt elke orde van integratie opgeven.

Enter a function:

Enter the order of integration:

Hint: type x^2,y to calculate `(partial^3 f)/(partial x^2 partial y)`, or enter x,y^2,x to find `(partial^4 f)/(partial x partial y^2 partial x)`.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\frac{\partial}{\partial x}\left(e^{x y}\right)$$$

Write the function $$$e^{x y}$$$ as a composition of the two functions $$$u=g=x y$$$ and $$$f\left(u\right)=e^{u}$$$.

Apply the chain rule $$$\frac{\partial}{\partial x} \left(f\left(g\right) \right)=\frac{\partial}{\partial u} \left(f\left(u\right) \right) \cdot \frac{\partial}{\partial x} \left(g \right)$$$:

$${\color{red}{\frac{\partial}{\partial x}\left(e^{x y}\right)}}={\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right) \frac{\partial}{\partial x}\left(x y\right)}}$$

The derivative of an exponential is $$$\frac{\partial}{\partial u} \left(e^{u} \right)=e^{u}$$$:

$${\color{red}{\frac{\partial}{\partial u}\left(e^{u}\right)}} \frac{\partial}{\partial x}\left(x y\right)={\color{red}{e^{u}}} \frac{\partial}{\partial x}\left(x y\right)$$

Return to the old variable:

$$e^{{\color{red}{u}}} \frac{\partial}{\partial x}\left(x y\right)=e^{{\color{red}{x y}}} \frac{\partial}{\partial x}\left(x y\right)$$

Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=y$$$ and $$$f=x$$$:

$$e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x y\right)}}=e^{x y} {\color{red}{y \frac{\partial}{\partial x}\left(x\right)}}$$

Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:

$$y e^{x y} {\color{red}{\frac{\partial}{\partial x}\left(x\right)}}=y e^{x y} {\color{red}{1}}$$

Thus, $$$\frac{\partial}{\partial x}\left(e^{x y}\right)=y e^{x y}$$$

Answer: $$$\frac{\partial}{\partial x}\left(e^{x y}\right)=y e^{x y}$$$


Please try a new game Rotatly