Jacobiaan en zijn determinant van $$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$
Uw invoer
Bereken de Jacobiaan van $$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$.
Oplossing
De Jacobiaanse matrix wordt als volgt gedefinieerd: $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right].$$$
In ons geval geldt $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial}{\partial r} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\\\frac{\partial}{\partial r} \left(e^{4 r} \cos{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(e^{4 r} \cos{\left(3 \theta \right)}\right)\end{array}\right].$$$
Bepaal de afgeleiden (voor de stappen, zie afgeleiderekenmachine): $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right].$$$
De Jacobiaanse determinant is de determinant van de Jacobiaanse matrix: $$$\left|\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right| = - 36 \cos{\left(6 \theta \right)}$$$ (voor de stappen, zie determinantencalculator).
Antwoord
De Jacobimatrix is $$$\left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right]$$$A.
De determinant van de Jacobiaan is $$$- 36 \cos{\left(6 \theta \right)}$$$A.