Rekenmachine voor het vermenigvuldigen van veeltermen
Vermenigvuldig veeltermen stap voor stap
De rekenmachine vermenigvuldigt twee veeltermen (tweedegraads, tweeterm, drieterm, enz.), met stapsgewijze uitwerking.
Solution
Your input: multiply $$$2 x^{2} - 4 x + 2$$$ by $$$2 x^{2} - 4 x + 2$$$.
To multiply polynomials, multiply each term of the first polynomial by every term of the second polynomial. Then simplify the products and add them. Finally, simplify further if possible.
So, perform the first step:
$$$\left(\color{Green}{2 x^{2}}\color{DarkMagenta}{- 4 x}+\color{DarkCyan}{2}\right) \cdot \left(\color{Purple}{2 x^{2}}\color{Magenta}{- 4 x}+\color{Red}{2}\right)=$$$
$$$=\left(\color{Green}{2 x^{2}}\right)\cdot \left(\color{Purple}{2 x^{2}}\right)+\left(\color{Green}{2 x^{2}}\right)\cdot \left(\color{Magenta}{- 4 x}\right)+\left(\color{Green}{2 x^{2}}\right)\cdot \left(\color{Red}{2}\right)+$$$
$$$+\left(\color{DarkMagenta}{- 4 x}\right)\cdot \left(\color{Purple}{2 x^{2}}\right)+\left(\color{DarkMagenta}{- 4 x}\right)\cdot \left(\color{Magenta}{- 4 x}\right)+\left(\color{DarkMagenta}{- 4 x}\right)\cdot \left(\color{Red}{2}\right)+$$$
$$$+\left(\color{DarkCyan}{2}\right)\cdot \left(\color{Purple}{2 x^{2}}\right)+\left(\color{DarkCyan}{2}\right)\cdot \left(\color{Magenta}{- 4 x}\right)+\left(\color{DarkCyan}{2}\right)\cdot \left(\color{Red}{2}\right)=$$$
Simplify the products:
$$$=4 x^{4}- 8 x^{3}+4 x^{2}+$$$
$$$- 8 x^{3}+16 x^{2}- 8 x+$$$
$$$+4 x^{2}- 8 x+4=$$$
Simplify further:
$$$=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$
Answer: $$$\left(2 x^{2} - 4 x + 2\right)\cdot \left(2 x^{2} - 4 x + 2\right)=4 x^{4} - 16 x^{3} + 24 x^{2} - 16 x + 4$$$.