Free Step-by-Step Math Calculator

Solve problems from algebra to calculus step by step

This online calculator solves a wide range of algebra, geometry, calculus, probability/statistics, linear algebra, linear programming, and discrete mathematics problems, with steps shown.
Didn't find the calculator you need? Request it

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{9 x^{3} + 11 x - 3}{3 x + 2}$$$ using long division.

Solution

Write the problem in the special format (missed terms are written with zero coefficients):

$$$\begin{array}{r|r}\hline\\3 x+2&9 x^{3}+0 x^{2}+11 x-3\end{array}$$$

Step 1

Divide the leading term of the dividend by the leading term of the divisor: $$$\frac{9 x^{3}}{3 x} = 3 x^{2}$$$.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: $$$3 x^{2} \left(3 x+2\right) = 9 x^{3}+6 x^{2}$$$.

Subtract the dividend from the obtained result: $$$\left(9 x^{3}+11 x-3\right) - \left(9 x^{3}+6 x^{2}\right) = - 6 x^{2}+11 x-3$$$.

$$\begin{array}{r|rrrr:c}&{\color{Purple}3 x^{2}}&&&&\\\hline\\{\color{Magenta}3 x}+2&{\color{Purple}9 x^{3}}&+0 x^{2}&+11 x&-3&\frac{{\color{Purple}9 x^{3}}}{{\color{Magenta}3 x}} = {\color{Purple}3 x^{2}}\\&-\phantom{9 x^{3}}&&&&\\&9 x^{3}&+6 x^{2}&&&{\color{Purple}3 x^{2}} \left(3 x+2\right) = 9 x^{3}+6 x^{2}\\\hline\\&&- 6 x^{2}&+11 x&-3&\end{array}$$

Step 2

Divide the leading term of the obtained remainder by the leading term of the divisor: $$$\frac{- 6 x^{2}}{3 x} = - 2 x$$$.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: $$$- 2 x \left(3 x+2\right) = - 6 x^{2}- 4 x$$$.

Subtract the remainder from the obtained result: $$$\left(- 6 x^{2}+11 x-3\right) - \left(- 6 x^{2}- 4 x\right) = 15 x-3$$$.

$$\begin{array}{r|rrrr:c}&3 x^{2}&{\color{Fuchsia}- 2 x}&&&\\\hline\\{\color{Magenta}3 x}+2&9 x^{3}&+0 x^{2}&+11 x&-3&\\&-\phantom{9 x^{3}}&&&&\\&9 x^{3}&+6 x^{2}&&&\\\hline\\&&{\color{Fuchsia}- 6 x^{2}}&+11 x&-3&\frac{{\color{Fuchsia}- 6 x^{2}}}{{\color{Magenta}3 x}} = {\color{Fuchsia}- 2 x}\\&&-\phantom{- 6 x^{2}}&&&\\&&- 6 x^{2}&- 4 x&&{\color{Fuchsia}- 2 x} \left(3 x+2\right) = - 6 x^{2}- 4 x\\\hline\\&&&15 x&-3&\end{array}$$

Step 3

Divide the leading term of the obtained remainder by the leading term of the divisor: $$$\frac{15 x}{3 x} = 5$$$.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: $$$5 \left(3 x+2\right) = 15 x+10$$$.

Subtract the remainder from the obtained result: $$$\left(15 x-3\right) - \left(15 x+10\right) = -13$$$.

$$\begin{array}{r|rrrr:c}&3 x^{2}&- 2 x&{\color{BlueViolet}+5}&&\\\hline\\{\color{Magenta}3 x}+2&9 x^{3}&+0 x^{2}&+11 x&-3&\\&-\phantom{9 x^{3}}&&&&\\&9 x^{3}&+6 x^{2}&&&\\\hline\\&&- 6 x^{2}&+11 x&-3&\\&&-\phantom{- 6 x^{2}}&&&\\&&- 6 x^{2}&- 4 x&&\\\hline\\&&&{\color{BlueViolet}15 x}&-3&\frac{{\color{BlueViolet}15 x}}{{\color{Magenta}3 x}} = {\color{BlueViolet}5}\\&&&-\phantom{15 x}&&\\&&&15 x&+10&{\color{BlueViolet}5} \left(3 x+2\right) = 15 x+10\\\hline\\&&&&-13&\end{array}$$

Since the degree of the remainder is less than the degree of the divisor, we are done.

The resulting table is shown once more:

$$\begin{array}{r|rrrr:c}&{\color{Purple}3 x^{2}}&{\color{Fuchsia}- 2 x}&{\color{BlueViolet}+5}&&\text{Hints}\\\hline\\{\color{Magenta}3 x}+2&{\color{Purple}9 x^{3}}&+0 x^{2}&+11 x&-3&\frac{{\color{Purple}9 x^{3}}}{{\color{Magenta}3 x}} = {\color{Purple}3 x^{2}}\\&-\phantom{9 x^{3}}&&&&\\&9 x^{3}&+6 x^{2}&&&{\color{Purple}3 x^{2}} \left(3 x+2\right) = 9 x^{3}+6 x^{2}\\\hline\\&&{\color{Fuchsia}- 6 x^{2}}&+11 x&-3&\frac{{\color{Fuchsia}- 6 x^{2}}}{{\color{Magenta}3 x}} = {\color{Fuchsia}- 2 x}\\&&-\phantom{- 6 x^{2}}&&&\\&&- 6 x^{2}&- 4 x&&{\color{Fuchsia}- 2 x} \left(3 x+2\right) = - 6 x^{2}- 4 x\\\hline\\&&&{\color{BlueViolet}15 x}&-3&\frac{{\color{BlueViolet}15 x}}{{\color{Magenta}3 x}} = {\color{BlueViolet}5}\\&&&-\phantom{15 x}&&\\&&&15 x&+10&{\color{BlueViolet}5} \left(3 x+2\right) = 15 x+10\\\hline\\&&&&-13&\end{array}$$

Therefore, $$$\frac{9 x^{3} + 11 x - 3}{3 x + 2} = \left(3 x^{2} - 2 x + 5\right) + \frac{-13}{3 x + 2}$$$.

Answer

$$$\frac{9 x^{3} + 11 x - 3}{3 x + 2} = \left(3 x^{2} - 2 x + 5\right) + \frac{-13}{3 x + 2}$$$A


Please try a new game Rotatly