$$$\cos^{3}{\left(x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\cos^{3}{\left(x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \cos^{3}{\left(x \right)}\, dx$$$을(를) 구하시오.

풀이

코사인 하나를 분리하고, $$$\alpha=x$$$에 대한 공식 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$을 사용하여 나머지는 모두 사인으로 표현하세요.:

$${\color{red}{\int{\cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$라 하자.

그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - u^{2}\right)d u}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(1 - u^{2}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$

상수 법칙 $$$\int c\, du = c u$$$$$$c=1$$$에 적용하십시오:

$$- \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + {\color{red}{u}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$u - {\color{red}{\int{u^{2} d u}}}=u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:

$${\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\sin{\left(x \right)}}} - \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$

따라서,

$$\int{\cos^{3}{\left(x \right)} d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}$$

적분 상수를 추가하세요:

$$\int{\cos^{3}{\left(x \right)} d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}+C$$

정답

$$$\int \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly