パラメータ $$$n = 5$$$ と $$$p = 0.22$$$ をもつ幾何分布の $$$P{\left(X = 5 \right)}$$$ を求めよ
入力内容
$$$n = 5$$$ と $$$p = 0.22 = \frac{11}{50}$$$ を用いた幾何分布の各種値を計算します(成功試行を含める)。
解答
平均: $$$\mu = \frac{1}{p} = \frac{1}{\frac{11}{50}} = \frac{50}{11}\approx 4.545454545454545$$$A。
分散: $$$\sigma^{2} = \frac{1 - p}{p^{2}} = \frac{1 - \frac{11}{50}}{\left(\frac{11}{50}\right)^{2}} = \frac{1950}{121}\approx 16.115702479338843.$$$A
標準偏差: $$$\sigma = \sqrt{\frac{1 - p}{p^{2}}} = \sqrt{\frac{1 - \frac{11}{50}}{\left(\frac{11}{50}\right)^{2}}} = \frac{5 \sqrt{78}}{11}\approx 4.014436757421749.$$$A
$$$P{\left(X = 5 \right)} = 0.0814331232$$$A
$$$P{\left(X \lt 5 \right)} = 0.62984944$$$A
$$$P{\left(X \leq 5 \right)} = 0.7112825632$$$A
$$$P{\left(X \gt 5 \right)} = 0.2887174368$$$A
$$$P{\left(X \geq 5 \right)} = 0.37015056$$$A
Please try a new game Rotatly