幾何分布計算機
あなたの入力
$$$n = 7$$$と$$$p = 0.5 = \frac{1}{2}$$$を使用して幾何分布のさまざまな値を計算します(成功試行を含む)。
答え
平均: $$$\mu = \frac{1}{p} = \frac{1}{\frac{1}{2}} = 2$$$A 。
分散: $$$\sigma^{2} = \frac{1 - p}{p^{2}} = \frac{1 - \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}} = 2$$$A分散性。
標準偏差: $$$\sigma = \sqrt{\frac{1 - p}{p^{2}}} = \sqrt{\frac{1 - \frac{1}{2}}{\left(\frac{1}{2}\right)^{2}}} = \sqrt{2}\approx 1.414213562373095$$$A 。
$$$P{\left(X = 7 \right)} = 0.0078125$$$A
$$$P{\left(X \lt 7 \right)} = 0.984375$$$A
$$$P{\left(X \leq 7 \right)} = 0.9921875$$$A
$$$P{\left(X \gt 7 \right)} = 0.0078125$$$A
$$$P{\left(X \geq 7 \right)} = 0.015625$$$A