試行回数 $$$n = 10$$$、成功確率 $$$p = 0.6$$$ の二項分布に従う $$$P{\left(X = 4 \right)}$$$ を求めよ
入力内容
$$$n = 10$$$、$$$p = 0.6 = \frac{3}{5}$$$、$$$x = 4$$$を用いて二項分布のさまざまな値を計算します。
解答
平均: $$$\mu = n p = \left(10\right)\cdot \left(\frac{3}{5}\right) = 6$$$A。
分散: $$$\sigma^{2} = n p \left(1 - p\right) = \left(10\right)\cdot \left(\frac{3}{5}\right)\cdot \left(1 - \frac{3}{5}\right) = \frac{12}{5} = 2.4$$$A.
標準偏差: $$$\sigma = \sqrt{n p \left(1 - p\right)} = \sqrt{\left(10\right)\cdot \left(\frac{3}{5}\right)\cdot \left(1 - \frac{3}{5}\right)} = \frac{2 \sqrt{15}}{5}\approx 1.549193338482967.$$$A
$$$P{\left(X = 4 \right)} = 0.111476736$$$A
$$$P{\left(X \lt 4 \right)} = 0.0547618816$$$A
$$$P{\left(X \leq 4 \right)} = 0.1662386176$$$A
$$$P{\left(X \gt 4 \right)} = 0.8337613824$$$A
$$$P{\left(X \geq 4 \right)} = 0.9452381184$$$A
Please try a new game Rotatly