$$$3138$$$ の素因数分解
入力内容
$$$3138$$$ の素因数分解を求めよ。
解答
まず、数 $$$2$$$ から始めます。
$$$3138$$$ が $$$2$$$ で divisible かどうかを判定せよ。
割り切れるので、$$$3138$$$ を $$${\color{green}2}$$$ で割る: $$$\frac{3138}{2} = {\color{red}1569}$$$.
$$$1569$$$ が $$$2$$$ で割り切れるかどうかを判定します。
整除できないので、次の素数に進みます。
次の素数は$$$3$$$です。
$$$1569$$$ が $$$3$$$ で割り切れるかどうかを判定します。
割り切れるので、$$$1569$$$ を $$${\color{green}3}$$$ で割る: $$$\frac{1569}{3} = {\color{red}523}$$$.
素数 $$${\color{green}523}$$$ は $$$1$$$ と $$${\color{green}523}$$$ 以外に約数を持たない: $$$\frac{523}{523} = {\color{red}1}$$$。
$$$1$$$ を得たので、これで終わりです。
あとは、約数(緑の数字)の出現回数を数えて、素因数分解を書きます: $$$3138 = 2 \cdot 3 \cdot 523$$$
解答
素因数分解は$$$3138 = 2 \cdot 3 \cdot 523$$$Aです。
Please try a new game Rotatly