分数を小数に変換する電卓

分数を小数に手順を追って変換

この電卓は、与えられた分数(真分数または仮分数)または帯分数を、小数(循環小数となる場合もあります)に変換し、計算手順を表示します。

Enter a fraction or

If you don't need a mixed number, leave the left cell empty.
If you need a negative fraction, write the minus sign in the left cell.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: convert $$$\frac{1500}{80}$$$ into a decimal.

Write the problem in the special format:

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\80&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&5&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 1

How many $$$80$$$'s are in $$$1$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$1-80 \cdot 0 = 1 - 0= 1$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{Chartreuse}{1}& 5 \downarrow&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 2

How many $$$80$$$'s are in $$$15$$$?

The answer is $$$0$$$.

Write down $$$0$$$ in the upper part of the table.

Now, $$$15-80 \cdot 0 = 15 - 0= 15$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{Green}{0}&\phantom{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&5& 0 \downarrow&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{1}&\color{Green}{5}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 3

How many $$$80$$$'s are in $$$150$$$?

The answer is $$$1$$$.

Write down $$$1$$$ in the upper part of the table.

Now, $$$150-80 \cdot 1 = 150 - 80= 70$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Purple}{1}&\phantom{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&5&0& 0 \downarrow&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{1}&\color{Purple}{5}&\color{Purple}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 4

How many $$$80$$$'s are in $$$700$$$?

The answer is $$$8$$$.

Write down $$$8$$$ in the upper part of the table.

Now, $$$700-80 \cdot 8 = 700 - 640= 60$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&\color{Violet}{8}&\phantom{.}&\phantom{7}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&5&0&0&.& 0 \downarrow&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{7}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&4&0&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 5

How many $$$80$$$'s are in $$$600$$$?

The answer is $$$7$$$.

Write down $$$7$$$ in the upper part of the table.

Now, $$$600-80 \cdot 7 = 600 - 560= 40$$$.

Bring down the next digit of the dividend.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&8&.&\color{Brown}{7}&\phantom{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&5&0&0&.&0& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&4&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{6}&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Step 6

How many $$$80$$$'s are in $$$400$$$?

The answer is $$$5$$$.

Write down $$$5$$$ in the upper part of the table.

Now, $$$400-80 \cdot 5 = 400 - 400= 0$$$.

$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&1&8&.&7&\color{Blue}{5}\end{array}&\\\color{Magenta}{80}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&5&0&0&.&0&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&5&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&5&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&8&0&\phantom{.}\\\hline\phantom{lll}&7&0&0&\phantom{.}\\-&\phantom{5}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&6&4&0&\phantom{.}\\\hline\phantom{lll}&&6&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&5&6&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Blue}{4}&\phantom{.}&\color{Blue}{0}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&4&\phantom{.}&0&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$

Since the remainder is $$$0$$$, then we are done.

Therefore, $$$\frac{1500}{80}=18.75$$$

Answer: $$$\frac{1500}{80}=18.75$$$


Please try a new game Rotatly